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ABSTRACT 

Let S be a bounded region in R N and let a ~ = (Si }m-t be a partition of S into a 
finite number of subsets having piecewise C 2 boundaries. We assume that 
where C 2 segments of the boundaries meet, the angle subtended by tangents to 
these segments at the point of contact is bounded away from 0. Let r : S---S 
be piecewise C 2 on ~ and expanding in the sense that there exists 0 < a < 1 
such that for any i = 1, 2 . . . . .  m, II Dri- t I] < or, where DrE t is the deriva- 
tive matrix of ri- ~ and II II is the euclidean matrix norm. The main result 
provides an upper bound on cr which guarantees the existence of an absolutely 
continuous invariant measure for r. 

1. Introduction 

In 1973 Lasota  and  Yorke  [ 14] p roved  a general sufficient condi t ion for the 

existence o f  an absolutely cont inuous  invar iant  measure  (a.c.i.m.) for  expand-  

ing, piecewise C 2 t r ans format ions  on the interval.  In spite o f  the suggestion at 

the end of  [ 14] that  the "bounded  var ia t ion"  techniques  o f  [ 14] can be easily 

used to obta in  analogous results in higher d imensions ,  the general izat ion o f  the 

ma in  result o f  [ 14] has taken m u c h  longer than  expected.  This  was par t ly  due 

to the difficulty in finding the right definit ion o f  var ia t ion  in higher d imen-  

sions. For  smoo t h  m a p s  on boundary less  domains ,  general results for  the 

existence o f  a.c.i .m, were known as early as 1969 [ 12]. For  piecewise C 2 maps  

in R N, the first m a j o r  a t t empt  to p rove  an existence result came  in 1979 [11]. 
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The authors do not use a bounded variation argument but the proof, based on 
a one-dimensional version [ l 0], is flawed. The first correct, but partial result, 
appeared in [8]. There, the author considers expanding, piecewise analytic 
transformations on the unit square partitioned by smooth boundaries. A 
complicated definition of bounded variation is used and the method cannot be 
extended beyond dimension 2. For boundaries which are not analytic, the 

sufficient condition that arises is rather complicated [9]. 
Working on rectangular partitions and with expanding, piecewise C 2 trans- 

formations which are very restrictive (the ith component  of the transforma- 
tion depends only on the ith variable), Jabtofiski [7] proved the existence of an 
a.c.i.m, using the Tonnelli definition of bounded variation. The technique in 

this special setting is exactly analogous to that in [ 14]. 
In [17] a necessary and sufficient condition for the existence of a.c.i.m, is 

presented, but in most cases it cannot be applied. 
With the publication of [3], a major new tool became available. The 

definition of variation of a function in R ~ as the integral of its generalized 
derivative [3] led to the following partial result [1 ]: piecewise C 2 transforma- 
tions on a rectangular partition satisfying a strong expansiveness condition 
(which depends on the dimension N of the space) have an a.c.i.m. Another 

partial result was obtained in [6]. 
In this note we follow through the approach of [ 1 ] in a more general setting. 

With only C 2 restrictions on the boundaries of the partition and with a mild 
restriction on how these boundaries meet, we prove the existence of an 
absolutely continuous invariant measure for z if the slope of z is sufficiently 
large. 

In this setting, we can invoke the powerful Ionescu Tulcea and Marinescu 
Theorem [5] to obtain a useful spectral decomposit ion for the Perron-  
Frobenius operator of z and, as a consequence, prove strong ergodic properties 

of the transformation itself. 
Applications of ergodic theory for higher dimensional transformations can 

be found in [ 16, 18]. 

2. Main result 

Let S h e  a bounded region in R N and let z be a transformation from S into S. 
We assume that z is piecewise C 2 and expanding, i.e., 

(a) there exists a partition ~ = {Si}7=~ of S, where m is a positive integer, 

and each Si is a bounded closed domain having a piecewise C 2 boundary of 

finite (N - 1)- dimensional measure; 
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(b) zt = Zls, is a C 2, 1-1 transformation from int(S~) onto its image and can 

be extended as a C 2 transformation onto S~, i = 1, 2 , . . . ,  m; 
(c) there exists 0 < a < 1 such that for any i = 1, 2 , . . . ,  m, 

(1) IIDzi -1 II < a ,  

where Dr7 ~ is the derivative matrix of T~-~ and I[ II is the euclidean matrix 

norm. 
We remark that condition (1) implies, for ri-~(x), z~-~(y) close enough, 

p(r~- ~(x), T~-'(y)) < ap(x, y), 

where x, y ~Ri  ----- r(int(S~)) and p is the euclidean metric in R N. 
Condition (1) is implied by any of the following equivalent conditions: 
(c 1) all the eigenvalues of Dzi- t are smaller than 1; 

(c2) all the eigenvalues of DT~ are larger than 1. 
If  IOzi/"/OXkl < 1 for some n, where z~f I is the j t h  component  of r~ -~, for 

i = 1 , . . . ,  m,  and 1 < j ,  k < N, then condition (c) is true for some iterate z t. 
m Let Z = U~=j int(S~). We will consider z as a transformation from Z into S. 

Our assumptions imply it is nonsingular, i.e., 2N(Z-~( ) )  is absolutely con- 
t inuous with respect to Lebesgue measure 2N on S. This is enough for r to 

induce the Perron-Frobenius operator 

defined by 

/9, : L I (S) - -*  LI(S), 

P~f(x) = ~ f('t'i-l(x)) 

where XR is the characteristic function of the set R and J ( # )  is the absolute 
value of the Jacobian of ft. The properties of P~ are described in [13], for 
example. It is well known t h a t f  is a z-invariant density if and only i f P ~ f =  f .  

The main tool of the paper is the multidimensional notion of variation 

defined using derivatives in the distributional sense [3]: 

V(f) = f R. ll Dfl, -- sup ( f RNf div(g)d;tlv : g = (g, . . . .  , gN)EC~(RS, RN)} , 

where f ~ L , ( R  N) has bounded support, Dfdeno tes  the gradient o f f  in the 
distributional sense, and C~(R N, R N) is the space of continuously differenti- 
able functions from R t~ into R N having compact support. We will use the 
following property of variation which is easily derived from [3, Remark 2.14]: 
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If  f - -  0 outside a closed domain A whose boundary is Lipschitz continuous, f a  

is continuous, fi.t(a) is C 1, then 

V ( f ) =  f.~<a) 11Df][ d2N+ faa ' f ld2N-l,  

where ;tN- l is the (N - 1)- dimensional measure on the boundary of A. 
In the sequel we shall consider the Banach space [3, Remark 1.12], 

BV(S) = { f ~ L , ( S )  : V( f )  < + oo}, 

with the norm [[ flirty = [[ filL, + V(f) .  
Before stating the main theorem, we shall need a number  of lemmas. 
Consider an element Si ~ ~'. Let x be a point in OSi and y = r(x) a point in 

O(r(Si)). Let ,¢ be the Jacobian of  rls , at x and of 0 the Jacobian of  rigs,) at x. 

LEMMA 1. J o / J  < a .  

PROOF. Let (7. be a neighbourhood of y in r(S~) and Bn = C. N a(z(S~)), 
n = 1, 2 . . . . .  Let ~, be a curve perpendicular to 0(T(S~)) at y extending into C,, 
and let y, = 7 r3 £7,. We foliate C, into hypersurfaces B,(t), t ~7~, each B,(t) 
being perpendicular to ~,., and thus approximately parallel to B,. We assume 
that for any n, AN- ~(B,(t)) = AN_ ~(B,) for all t ~ ~,,. Then, if C, is small enough, 
we have: 

2u(C.) = (1 + e.) f 2U_l(B.(t))d~'.(t) = (1 + en))tN_l(Bn)J.l(~n), 
d ?. 

where e. ~ 0 as diam(C.)  ---- 0. On the other hand, we have 

l / J =  lim 2N(r-I(C.))/2u(C.). 
diam(C.)~0 

To estimate 2o(r- ' (C.)) ,  let r/. =r -~(7 . ) ,  D.(t)=r-~(B.( t)) ,  tE~,.. Let 
NON(t, O be the Jacobian of rto.~t ), where tET. ,  (~D. ( t ) .  Since rls , is a 
C2-diffeomorphism, l/.¢0(t, ~) is a Cl-function. Thus 

2u_,(D.(t)) = f ( l / iN(t ,  ~))d2N_,(~) 
3a. (t) 

< f ( l / J o  +Kdiam(C.) )d2N_,(¢)  
d O  .(t) 

= (1/J0 + K diam(C.))2u_ l(Bn ), 

for a constant K > O. 
We have 
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2u(r -1(C,,)) < : , .  2N-l(D.(t))drl.(t) 

= (1/ago + K diam(C,,))2u_ ~(B,,)2,(t/,,) 

= a(1/ago + K diam(C,,))2N_ 1(B.)2~(7.). 

Thus 

,~N(r - l(Cn))/,~N(C n) '~ tT( 1/ag0 + K diam(C,))( 1 + e~). 

Taking the limit as diam(C,)--, 0, we get l / J  < a/ag0. 

We note that this result is a considerable improvement over the condition 

J o / J  < Ntr derived in [1] for transformations on rectangular partitions. 

Let S be a closed domain in R N with W = 0S, which is piecewise C 2 and of 

finite (N - 1)-dimensional measure. Let D denote the set of  singular points of  

W, and let v(x) denote the normalized outward normal vector at x ( i fx  ~ D ,  

there are several possible outward normals). For any x ~ W, let Wx be a small 

neighbourhood o f x  in W, contained completely in one face of  W. I fx  E D ,  we 

use a half-neighbourhood which is in one face. 

For any x E W, we define an RN-neighbourhood of x, ~//(J, a, x), J > 0, 

rr/2 < a < n, as follows: let H(y), y ~ Wx be a C ~ normalized vector field, 

such that z.(H(x), v(x))= a (z. denotes angle). For any point y ~  W~, let 
L.v = [y ,y  + J H ( y ) ] ,  the segment joining y and y +JH(y) .  Now, let 

,i/(J, a, x) = I,.Jye ~. Ly. If Wx and J are small enough ~/t(J, a, x)  lies completely 

on one side of W~. 

LEMMA 2. For any x E W, and for any e > 0 sufficiently small, we can 

choose Wx so that: 

(1 + e) 2 

for any f E CI(RN). 

PROOF. The inequality (2) obviously holds if Wx is a piece of an 

( N -  1)-dimensional hyperplane. The idea of  the proof is to convert our 

situation to that simple case. 
By an orthogonal change of variables to the variables (zl . . . . .  zN) in R N, we 

can ensure that the hyperplane Tx tangent to Wx at x is given by zN = 0, and the 

angle a between v(x) and Lx is contained in the plane zl = z2 . . . . .  ZN-2 = 
0. We choose W~ so small that it can be described by the equation: zN = 
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z = (zl . . . . .  z•_ 1, ZN) Z' 

................................................................................................. i. 
L, i 

y = ( Y , . . . , Y ~ - I ,  YN) T~ 

,t, v ( x  ) 

Fig. 1. 

W(z~ . . . .  , ZN); see Fig. 1. First, we straighten out all the segments Ly. We shall 

do this by keeping the same point y and shifting the point z to z', as shown in 

Fig. 1. If z = (z~ . . . . .  Zu) is any point on the segment Ly,  y = ( y ~ , . . . ,  YN), 

then: 
z = (Yl . . . . .  YN) + I tg otl(ZN -- Yu)[hl . . . .  , hN] 

and Z ' = ( y l , . . . , y N - I ,  ZN), where [ h l , . . . , h u ] = H ( Y ) ,  a = a ( y l  . . . .  , Y N ) =  

/- . (H(y) ,  v(x)) .  Thus the straightening out is accomplished by the transforma- 

tion ~01 defined by: 

~0,(Zl,..., ZN) = ( Z l , . . . ,  Zu) -- I tg a l(Zu -- y N ) [ h , , . . . ,  hN- , ,  0], 

where a, h, . . . . .  h N - ,  are C' functions of yl, . . . .  YN, YN = W ( y , , . . .  , Y N - , )  

and y , , . . . ,  YN- ,  are C 2 functions of z , , . . . ,  zN. 

Let 

\ Ozj ],,j = 1 

be the Jacobian of ~0~. 
Notice that for z = x  = y  we have h~ = h 2  . . . . .  h u _ 2 = O W / O z ~ =  

a W/Oz2 = a W/OZN_ ~= Z N -  YN = 0 and that the derivatives of  all involved 

functions are continuous and bounded. This implies that ,,¢(~00(x)= 1 and 
that choosing Wx and 6 small enough we can ensure J(~0~)< 1 + e on 

~t(6, a, x). 
We now straighten out the surface Wx. This is done by the transformation 

~o2(z~ . . . . .  Z N )  = (Z~ ,  . . . , Z l ~ -  ~, Z u  - -  W ( Z l  . . . . .  Z N - 0 ) .  
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The Jacobian of  tP2, J(~02), is equal 

I4:' = ~02~ol(Wx). Then, we have: 

tO 1. Let  ~ / =  (P2 o (pl(O~/(¢~, O/, X)) and  

1 :~ fd2u 
(1 + e) 

(1 + e )  

where r / =  ~02 o ~o~(~) and w = ~o2(y). To obtain (2), we need drl/d~ and J(~2), 

where ~2 is ~o2 treated as a t ransformation from W~ into W~,. From Fig. 1, it is 

easy to see that  d~l/d~ = I cosa l ,  where a = a ( z ~  . . . .  , zu). I f  Wx is small 

enough I cos a(zL . . . .  , zs) l > I cos a l - e. Also, 

J((o2)(y)= I Det((g~, N - I  gj))~,j= ~ I -~, 

where g ( z l , . . . , Z N - l )  = ( Z l , . . . , Z N - I ,  W(Zl , . . . ,ZN- I ) )  and gi =Og/Ozi, 
i = 1 . . . . .  N - 1. Since this determinant  is 1 at the point x and all derivatives 

involved are at least continuous,  we can choose Wx so small that 

1 
J((o2)(y) > - - ,  for y E Wx. 

l + e  

We obtain 

1 Ida)  J((o2)(Y)d~N-I(Y) 

- (1 + e)  2 . f ( ~ )  d k . _ , ( y ) .  

By a regular cone in R ~ we mean a cone whose base is a (N - 1)- dimensional  

disk B and such that the central ray L joining the vertex to the center of  the disk 

B is perpendicular to the disk. We define the angle subtended at the vertex o f  a 

regular cone to be the angle between L and any line joining the vertex to a point 

on the boundary of  B. 

Let S, like before, be a closed domain  in R ~ having piecewise C 2 boundary of  

finite (N - 1)- dimensional measure. 

Let us now construct at any singular point x ~ D, the largest possible regular 

cone having its vertex at x and which lies completely in S. Let O(x) denote the 

angle subtended at the vertex of  this cone. Then define 
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fl(S) = min O(x). 
xED 

Since the faces of W meet at angles bounded away from O, f l (S)> O. Let 

a(S) = n/2 + fl(S) and 

~(S)  = I cos  ~ (S )  l. 

Now we will construct a C 1 field of  segments Ly, y ~ W = OS, every Ly being 
a central ray of a regular cone contained in S, with angle subtended at the 

vertex y greater than or equal to fl(S). 

We start at the points y E D ,  where the minimal angle fl(S) is attained, 

defining Ly to be central rays of the largest regular cones contained in S. Then 

we extend this field of segments to the C l field we want, making L r short 

enough to avoid overlapping. Let 3(y) be the length of  Ly, y E W. By 

compactness of W we have 

a(S) = inf a(y)  > O. 
yEW 

Now we shorten Ly of our field, making them all of  the length 6(S). 

L~MMA 3. I f  some S is a closed domain with piecewise C 2 boundary offinite 
( N -  l )-dimensional measure, whose smooth faces meet at angles bounded 
away from zero, and f is a C ~ function on S, then 

1_2_ (1__ 
+ 

:os f(y)d2N- = a(S) \a(S) I(Y) 
< 

PROOF. Fix g > 0, sufficiently small. We partition W = OS into sets Wx,, 

i = 1 , . . . ,  M, for which inequality (2) holds and define sets ql(a(S), a(S), &), 
i = 1 , . . . ,  M, using the field of segments Ly, y ~ W, constructed above. Now, 
for any y E W \ D, we have: 

and 
f (y)  < min{f(x)" xELy}  + VL,(f), 

f<y)<= i £ 
ILy[ , f ({)d{ + VL,(f) < -  

,£ 
,~(S) .f({)d{ + VL,(f), 

where VL(f) is the variation of  f along the line L r. We also have 

VL,(f) <= :L, [I Df(x) [[ dx. 
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Integrating over Wx,, i -- 1 , . . . ,  M, we get 

w f(Y)d2N-l(Y) 

< ( l + e )  2 1 : a  fd2N@ ( 1 + e )  2 f 

Summing up, and noting that JI/(J(S), a(S), xt) do not overlap, we get: 

Since e is arbitrary, Lemma 3 is proved. • 

Let z : S --- S be a piecewise C 2 expanding transformation. We assume that 

the sets St, i = l , . . . ,  m, of its defining partition have piecewise C 2 boundar- 

ies of finite (N - 1)- dimensional measure and that 

a =min{a(Si):i = 1 . . . . .  m } > 0 .  

Let 

g = min{6(&): i = 1 , . . . ,  m} > 0 .  

Under these assumptions, we prove the following results. 

LEMMA 4. Let f~L~(S). I f V ( f ) <  + m, then 

V(P~f) <= a(1 + 1/a)V(f) + K II f[lL,, 

for some constant K < + oc. 

PROOF. First we assume tha t f~C~(S) .  Then 

e~f= ~ f(rt-t) 

Let F~ = f i r :  l ) / J ( rT '  ), i = 1 , . . . ,  m. Then, 

II DP~fll d2N < ~ fR" II D(FizR,)[I dAN i=l 

~-~ i=l ~ ( L~ H (DFi))~Ri I] d~N -~- £N [I Fi(D)~R,) II dAN). 
We have 
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f.. It (DF,)xR, II d~N 

= f., II (DF,) II d2N 

---< fR, 

I N V A R I A N T  MEASURES 

II (Df(Ti-l))/d(~('(i-l) II dAN + f .  II f(z,-1)D(l lJ(zF'))II d~N 
i 

N ( "  OXj k=~ OXk <=E 
j= 1 JR, (~(~.i--I) 

f~ Ko d~N+ , If(T,-')l ~ d ; t N  

281 

i ,J Si 

where ziT) is the j th  component of zi-), 1 < i < m, I < j < N, and Ko is an 
upper bound for [] D(J(z i - i  )) -i [I J (z i - i  ), which exists by the C 2 assumption 

on zi, l < i <=m. 
Now, using Example 1.4 of [3], we obtain: 

~,~ ]l F, tDzR,) ll d2u= fo IF,,d2u-, 

= ~ ]f('ci-l)[~Y('~i-1)-ld,~,N-i = ~ ]f[(~Co/~)d,~u-1, 
R, Si 

where J o  is the Jacobian of z~ : OSi ~ ORi. 
By Lemma l, J o / J  --< a. Therefore, using Lemma 3, we obtain: 

.fR~ ], F,(DzR.)], d2N_-<o " los. if] d2u_, 

__< - g ( f ,  Si)  + Ifl dry,. 
a a-6 , 

Summing up, we get: 

V(P,T) <= a(1 + l /a)V(f )  + (Ko + a/aa) ][ f ][L,. 

Let K =Ko + a/aa. 
In general, let fEBV(S) .  There exists a sequence of C ~ functions f, ,  

n = 1, 2 , . . . ,  which approximates f i n  BV(S). We have: 
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V ( P J )  = sup f (P~f)div(h )d2~, 
h J R N  

= sup lim f (P~f.)div(h)d2~ 
h n - - + ~  J R N  

= sup lim sup f (PJ~)div(h)d2s 
h n - + ~  J R N  

_-< lim sup V(P~f.) 
n ~ + C C  

_-< lira (a(l + I /a)V(f . )  + K II f .  ILL,) 

= a(1 + 1/a)V(f)  + K II filL,, 

where hEC' (RN,  RN), II h II ~ 1. • 

LEMMA 5. For a n y f ~ B V ( S )  

(3) IIe, fllBv -<- a(l  + l/a)II fllBv + (g  + 1)II filL,. 

PROOF. Follows directly from Lemma 4 and the definition of II lily. • 

REMARK. For N = 1, the inequality (3) yields the same slope condition as 
in the original Lasota-Yorke Theorem [ t 4]. 

We can now state the main result of this paper. 

THEOREM 1. Let z : S ~ S, S C R ~, be a piecewise C 2, expandingtransfor- 

mation. I f  a(1 + 1/a)< 1, then z admits an absolutely continuous invariant 

measure. 

PROOF. From inequality (3) it follows that the set { II e~'(l)IIBv},~, is 
uniformly bounded. Hence the set {P~ (1)}i ~ ~ is weakly compact in LI (actually 
it is strongly compact), and it follows from the Kakutani-Yoshida Theorem 
that P, has a nontrivial fixed point f *  which is the density of an a.c.i.m. • 

COROLLARY 1. Let T: S ~ S, S c R N, be piecewise C 2 and such that some 

iterate r k satisfies a(1 + 1/a) < 1 (a and a corresponds to zk). then z admits an 

a .c.i.m . 

PROOF. Straightforward. • 

EXAMPLE. For a rectangular partition of a rectangular domain in R ~¢, we 
have 1/a = x /~ ,  which gives the expansion condition tr(l + v/N) < 1. 
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REMARK. The expansion condition a < (1 + l /a)  -~ depends only on the 
domain S and not on the transformation z. Under  certain conditions on z, we 

can obtain an improved expansion condition such as is done in [9] in 
dimension 2. These conditions are usually very complex and require accurate 
knowledge of  the transformation. 

3. Spectral decomposition 

In this section we will use the Ionescu Tulcea and Marinescu Theorem [5]. 
First we have to check that the assumptions of  the theorem are satisfied: 

We consider the space BV, II IInv as included in L1, II ILL,. 
(1) By the semicontinuity property of variation (Theorem 1.9 of [3]), if 

(L} BV, II L IIBv --< D, for n = 1, 2 . . . .  and f~ ~ f i n  Ll, then f ~ B V  and 

II f line =<- D. 
(2) The operator norm of the Perron-Frobenius operator P~ is 1. 
(3) There exist constants R > 0, 0 < r < 1 such that 

IIP fllBv rllfllBr+ R II filL,, forf BV. 

This follows by Lemma 5 if a(1 + l / a ) <  1. 

(4) The image of any bounded subset of B V under the Perron-Frobenius 
operator is relatively compact in LI. This follows from the compactness 
Theorem 1.19 of  [3]. 

The Ionescu Tulcea and Marinescu Theorem implies the following result: 

THEOREM 2. Let z : s ---, S, S c R N, N > 1, be a piecewise C 2 and expand- 

ing transformation with a(1 + 1/a) < 1 and let P = P~ be its Perron-Frobenius 

operator. Then: 

(a) P (as an operator from B V  into BV)  has a finite number o f  eigenvalues o f  

modulus l: ai, . . . , at. They are roots o f  unity and 

! 

P =  ~, aiPi + T, 
i = l  

where P~ : BV--* B V  are linear projections with finite dimensional range, and 

T: BV---, B V  is a continuous linear operator; 

(b) P~ =Pi,  P i P j = O ( i  ~ j ) , P ~ T =  TP~ = 0 ,  1 ~ i , j < t ;  

(c) 11T" ][By < M/(1 + h)", n = 1, 2 . . . . .  for some M,  h > 0 .  

REMARK (see [15]). Operators Pi, i = 1 . . . . .  t and T have unique exten- 
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sions onto LL. Moreover  P~(Lt) C BV, [[ Pi [[L, ~ 1 and sup, [[ T" [[ < + oo. 
For a n y f ~ L ~ ,  T"f--*O in L~, as n -~ + oo. 

The following theorem and corollaries are consequences of  the represen- 
tation of  the Perron-Frobenius  operator obtained in Theorem 2. 

ThEOReM 3 (see [15]). Assume that 1 is the only eigenvalue o f  P with 
modulus 1 (we can consider pk, where k is the smallest common multiplier oJ 

orders o f  a~ . . . .  , a,). Let Ug = g o 3, for g EL~ .  Then there exist nonnegative 

functions O~ . . . .  , (~s E B V  and ~ . . . .  , ~ E L ~  such that: 

(a) For a n y f E L ~  

i - I  

(b) POi = ~i, U~i -- ~i, i = 1, . . . , s. 
(c) I~" Oiu/,d2~ --- ~0, in f{0 ,  ~j} = 0 -- i n f ( ~ ,  ~,j} as i ÷ j ,  and[.R~O,d2N = 1, 

l N i , j < = s ,  
(d) There exist measurable sets Ci . . . . .  C, c S such that ~,~ =- Xc a.e., for 

i = 1 . . . . .  s and S = U:= 1 Ci a.e. 
(e) f')nL~ U~(L~)= f-),~-~ U"(L~) = S p a n { ~ q , . . . ,  ~u,). 
(f) For any f ~ L t ,  U"f ~ P*f  in a(L~,BV)-topology; for any f ~ L ~ ,  U"f ---, 

P ' f i n  tr(L~, LJ-topology; 

i - I  

COROLLARY 2 (see [ 15]). For any 1 <-_ i <-_ s, r~c, is an exact transformation.  

COROLLARY 3 (see [l 5]). I f  we assume that z is mix ing  (or weakly mix ing ,  
which is equivalent in this situation), and# is its unique a.c. i .m. ,  then z has the 

property o f  exponential decay o f  correlation: Let f E B V ,  g ~ L ~  and I~(f)= 

~R, f d#, g(g)  = I,~ g dlt. Then 

:g~ (fg(z") g( f )g(g))dl t  II g ILL=:, n < g ( f )  V ( f )  1, 2 , . . . ,  

where 0 < r < 1 is the constant o f  condition (3). 

COROLLARY 4 (see [ 15]). I f  we assume that z is mixing, then the defining 
partition {Si}Y-t is weakly Bernoulli for 3, whch implies that the natural 
extension o f  the dynamical system (z, g) is isomorphic to a Bernoulli shift (p is 

the z-invariant absolutely continuous measure). 
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COROLLARY 5 (see [4]). Assume that r, 1~ is weakly mixing (it is equivalent 
to being mixing or exact in our situation). Let f ~ B V and ~t ( f )  = ~1~ f dlz = O. 

Define 
t - - I  

S(t) = 1~ f o r ' ,  
i-O 

which is a stochastic process on (S,/1). Then the series (a below has nothing to 
do with the contraction constant of formula (1), we use it here only for 

historical reasons) 

tr2= ~s f2d~ + 2  ~ ~s f i f o  zk)d/~ 
k ~ l  

converges absolutely, ~sS(t)2dl ~ = ta2+  0(1) and, i f  a 2 ~ O, the following 
holds: 

(i) supzeR Ilt((a2t)-IaS(t) <= z) - (2n) - la  ~_~ exp( - xZ/2)dx l = O(t-v), 
for some v > O. 

(ii) Without changing its distribution, one can redefine the process (S(t))t ~_o 
on a richer probability space together with the standard Brownian motion 

(B(t)),,_o such that 

la- lS( t )  - B(t)l = O( t°m- ' ) ,  #-a.e., 

for some 0 < e < 1/2. 
(iii) The process (S(t)),,_.o satisfies the iterated log law and other properties of  

Brownian motion. 
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